Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

State Forest Quarry No. 2 (State Forest #2 Mica Mine; Carini Quarry), Cobalt, East Hampton (Chatham), Middlesex County, Connecticut, USAi
Regional Level Types
State Forest Quarry No. 2 (State Forest #2 Mica Mine; Carini Quarry)Quarry (Abandoned)
CobaltProspect
East Hampton (Chatham)Quarry
Middlesex CountyCounty
ConnecticutState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
41° 34' 27'' North , 72° 33' 7'' West
Latitude & Longitude (decimal):
Type:
Quarry (Abandoned) - last checked 2023
Nearest Settlements:
PlacePopulationDistance
East Hampton2,691 (2017)4.1km
Lake Pocotopaug3,436 (2017)4.4km
Portland5,862 (2017)7.4km
Cromwell13,750 (2017)8.1km
Middletown46,756 (2017)8.3km
Nearest Clubs:
Local clubs are the best way to get access to collecting localities
ClubLocationDistance
Lapidary and Mineral Society of Central ConnecticutMeriden, Connecticut22km
Bristol Gem & Mineral ClubBristol, Connecticut35km
New Haven Mineral ClubNew Haven, Connecticut43km
Mindat Locality ID:
23093
Long-form identifier:
mindat:1:2:23093:2
GUID (UUID V4):
a892e062-0d49-4c5e-b965-f8a62dbd3aec


A granite pegmatite quarried and mined (there is a short flooded adit and drift on the NE wall) for mica during WWII. The only real description is given by Cameron et al (1954):

During the summer of 1942, it was worked by J. Carini, South Glastonbury, who recovered a few tons of mica. From February to August 1943, the mine was operated by F. and J. Burrone Bros., North Branford, and a small production of mica was maintained...[In May 1943] the only working was an opencut about 80 feet long, 10 to 20 feet wide and 10 to 20 feet deep, but the cut was largely backfilled.

The mine is in a tabular pegmatite enclosed in, and roughly concordant with, northward-dipping quartz-mica schist (Bolton schist). The body strikes N. 5Β° W. to N. 50Β° W. and has been traced for about 90 feet. The dip of the hanging wall ranges from 18Β° NE. to vertical, but in general is 40Β° to 45Β° NE. The footwall is uneven but is probably about parallel to the hanging wall. The pegmatite ends at the northwest end of the cut in a blunt nose that plunges steeply northward. Just southeast of the quarry rim, the pegmatite seems to plunge beneath schist, but this may be due to a roll in the wall similar to several found during mining.

The pegmatite shows border, wall, and intermediate zones and a discontinuous core. The border zone, 2 to 3 inches thick, consists of fine-grained quartz and muscovite, with accessory apatite and tourmaline. The wall zone consists of coarse plagioclase and quartz, with scattered muscovite books 2 to 10 inches broad and ΒΌ to 5 inches thick. Accessory minerals are biotite [annite], apatite, tourmaline, and garnet. The wall zone is 3.5 to 4 feet thick along the hanging wall where exposed. The corresponding part of the pegmatite along the footwall was not exposed.

The intermediate zone consists of coarse quartz, [microcline] perthite, and plagioclase with subordinate muscovite and accessory biotite [annite], apatite, tourmaline, and beryl. The zone encloses lenses of quartz with books of muscovite around their margins. The quartz lenses are probably segments of a discontinuous core, with a poorly defined discontinuous muscovite-bearing core-margin zone.


The pegmatite has since become locally well known for a small triphylite mass that altered into a suite of secondary minerals very similar to those found at the Palermo Mines in North Groton, New Hampshire, USA. The triphylite was discovered by Dick Schooner around 1955 as "an irregular mass, approximately two feet across, in the left hand wall of the open pit, just above the tunnel" (Schooner 1958). The abundant gray microcline at this locality should not be confused with triphylite.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


44 valid minerals. 5 erroneous literature entries.

Detailed Mineral List:

β“˜ Albite
Formula: Na(AlSi3O8)
Habit: anhedral
Colour: white, pale gray
β“˜ Almandine
Formula: Fe2+3Al2(SiO4)3
Description: an accessory mineral in the pegmatite
β“˜ Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Description: fka biotite, an accessory mineral in the intermediate zone of the pegmatite.
β“˜ Arrojadite-(KFe) ?
Formula: (KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Description: reported by Dick Schooner, no details in the reference.
β“˜ Arsenolite ?
Formula: As2O3
Description: a possible secondary mineral formed from the abundant arsenopyrite in this pegmatite, but speculative and unconfirmed.
β“˜ Arsenopyrite
Formula: FeAsS
Habit: anhedral, massive
Colour: gray
Description: plentiful as small grains and masses
β“˜ Autunite
Formula: Ca(UO2)2(PO4)2 · 10-12H2O
β“˜ Beraunite
Formula: Fe3+6(PO4)4O(OH)4 · 6H2O
Habit: coatings
Colour: green
Description: reported by Dick Schooner, no details in the reference. Visually identified by Van King from posted photographs but an XRD test made in the National Museum Prague (dr. Jiri Sejkora) of the green material with some matrix found "no beraunite but something similar to messelite" and apatite, which are the matrix species. EDS analysis shows green mineral is mitridatite.
β“˜ Bertrandite
Formula: Be4(Si2O7)(OH)2
β“˜ Beryl
Formula: Be3Al2(Si6O18)
Habit: columnar
Colour: pale yellow to light green
Description: "Light-green beryl occurs in crystals 1 to 5 inches in diameter and 1 to 17 inches long. Most of the crystals are large enough to be sorted by hand but some are intimately intergrown with quartz and plagioclase. Beryl was found chiefly in the nose of the pegmatite at the northwest; end of the quarry, in the intermediate zone." (Cameron et al 1954)
β“˜ Chalcopyrite
Formula: CuFeS2
Habit: massive
Colour: iridescent
Description: associated with triphylite and siderite
References:
β“˜ Columbite-(Fe)
Formula: Fe2+Nb2O6
β“˜ Diadochite
Formula: Fe3+2(PO4)(SO4)(OH) · 6H2O
Habit: coatings and micro globules
Colour: orange
Description: Orange coatings on triphylite, messelite, and other related phosphates
β“˜ Fluorapatite
Formula: Ca5(PO4)3F
Colour: gray
Fluorescence: yellow
Description: an accessory mineral in the pegmatite.
β“˜ Galena
Formula: PbS
Description: associated with the triphylite secondaries.
References:
β“˜ Goethite
Formula: Ξ±-Fe3+O(OH)
Habit: encrustations
Colour: dark brown to black
Description: from the alteration of sulfides
β“˜ Herderite
Formula: CaBe(PO4)F
Description: undoubtedly hydroxylherderite as there is still but one or two chemically verified herderite specimen in the world and even the so-called type locality for true herderite does not have the species by modern chemical analyses. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994).
β“˜ Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: alteration of triphylite associated with ferrisicklerite
β“˜ Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Habit: micro hexagonal prisms
Colour: colorless to white
Description: in pockets of altered triphylite with beraunite, whitmoreite, messelite, etc. Tested by XRD at the National Museum Prague (dr. Jiri Sejkora).
β“˜ Hydroxylherderite
Formula: CaBe(PO4)(OH)
Habit: flat prisms with dome terminations
Colour: pale yellow
Description: Specimens analyzed by Leavens, et al. (1978) from New England were analyzed and found to be true hydroxylherderite. As the study was made after the reference cited and as there are only one or two analyzed true herderites in the world, the entry was changed to conform to modern nomenclature. Leavens, et al., 1978, Compositional and Refractive Index Variations of the Herderite-Hydroxyl-herderite Series, American Mineralogist, v 63, p. 913-917. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994). Described (as herderite) by Schooner (1958) as "twenty five 1/32 inch pale yellow tabular crystals in a vug of albite and altered siderite, near a contact with semi-columnar beryl"
β“˜ Laueite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Habit: microscopic elongated prisms
Colour: red-orange
Description: "Tiny orange crystals are associated with strunzite fibers in vugs of altered messelite, with siderite and mitridatite" (Schooner 1961)
β“˜ 'Limonite'
β“˜ Ludlamite
Formula: Fe2+3(PO4)2 · 4H2O
Habit: cleavable masses
Colour: pale green
Description: "Light green cleavages were associated with siderite and triphylite. It also formed thin borders along messelite areas in hydrothermally altered triphylite." (Schooner 1961)
References:
β“˜ Malachite
Formula: Cu2(CO3)(OH)2
β“˜ Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Description: alteration of pyrite associated with triphylite
References:
β“˜ Messelite
Formula: Ca2Fe2+(PO4)2 · 2H2O
Habit: massive curved, lamellar aggregates, acicular microcrystals
Colour: white to tan, sometimes a green coating of an unknown.
Description: "Many solid white or tan masses, with a curved lamellar structure, were collected; some were two inches across. The messelite was intergrown with siderite, or embedded in triphylite. Distinct crystals, with a pearly luster, were noted in vugs of the massive mineral." Schooner (1961). Associated with triphylite, siderite, strunzite, laueite, mitridatite, ludlamite, vivianite. A green mineral thought to be beraunite was tested by XRD (with some matrix) at the National Museum Prague (dr. Jiri Sejkora) and found to be "no beraunite but something similar to messelite". The green may be only a coating.
References:
β“˜ Microcline
Formula: K(AlSi3O8)
Habit: anhedral
Colour: white to gray
Description: a component of the intermediate zone of the pegmatite. Gray color causes confusion with the very rarely found triphylite.
β“˜ Mitridatite
Formula: Ca2Fe3+3(PO4)3O2 · 3H2O
Habit: coatings
Colour: green
Description: Associated with triphylite, diadochite, messelite, siderite, strunzite, hydroxylapatite, ludlamite, vivianite in altered tryphilite masses.
β“˜ Moraesite ?
Formula: Be2(PO4)(OH) · 4H2O
Habit: coating
Colour: white
Description: "Very scanty fibrous white coatings were seen along cracks in beryl, associated with herderite, from near a triphylite body" (Schooner 1961)
β“˜ Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Habit: subhedral tabular
Colour: rum to silvery
Description: in the wall zone, muscovite books 2 to 10 inches broad and ΒΌ to 5 inches thick
β“˜ Palermoite
Formula: (Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Colour: colorless
Description: "A colorless acicular mineral, found by the author in a vug of messelite, at the State Forest Mine in East Hampton, does not fit the description of any typical species except palermoite. Unfortunately, very little was obtained; an excellent sample was sent away for testing, but was evidently lost" (Schooner 1961). Most likely, this was a very poor guess.
References:
β“˜ Phosphophyllite
Formula: Zn2Fe(PO4)2 · 4H2O
Colour: green
Description: "occurs as a hydrothermal alteration of sphalerite and triphylite, in vugs of messelite, with vivianite, at the State Forest Mine in East Hampton. Very few specimens have been found, and they are small; the crystals are green and quite glassy, the largest being about an eighth of an inch in diameter. The author suspected the identity of this material from the time he discovered it, several years ago, but it was not confirmed until recently. Some of the optical data follows: R. I. 1.615; optical angle 45 degrees, more or less; optic sign negative; birefringence high." (Schooner 1961)
β“˜ Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
β“˜ Pyrite
Formula: FeS2
Habit: massive, anhedral
Colour: pale brassy
Description: associated with triphylite
References:
β“˜ Pyrolusite
Formula: Mn4+O2
Description: No manganese dendrite in the world is pyrolusite. This was a nineteenth century guess that was widely repeated.
β“˜ Pyrrhotite
Formula: Fe1-xS
Habit: massive, anhedral
Colour: reddish bronze
Description: associated with triphylite
References:
β“˜ Quartz
Formula: SiO2
Habit: massive, anhedral
Colour: colorless, milky, smoky
Description: major component of the pegmatite
β“˜ Rockbridgeite ?
Formula: Fe2+Fe3+4(PO4)3(OH)5
Description: reported by Dick Schooner, no details in the reference.
β“˜ Roscherite ?
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Needs verification because of lack of data. May be greifensteinite described after the reference date.
β“˜ Schorl
Formula: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Habit: elongated prisms with shallow rhombohedral terminations
Colour: black
Description: An accessory mineral in the pegmatite.
β“˜ Scorodite ?
Formula: Fe3+AsO4 · 2H2O
Habit: encrustation
Description: Crusts associated with arsenopyrite but identity unconfirmed.
References:
β“˜ Siderite
Formula: FeCO3
Habit: fine-grained granular to cleavable masses
Colour: tan
Description: Mostly mixed with messelite and associated with triphylite, vivianite, ludlamite, sulfides, mitridatite. Small crystals are rare and generally altered.
β“˜ Smithsonite
Formula: ZnCO3
Description: speculation by Schooner (1958)
References:
β“˜ Sphalerite
Formula: ZnS
Habit: granular, cleavable masses
Colour: very dark brown to black
Description: Associated with triphylite and its secondaries and other sulfides as small masses and grains.
β“˜ Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Habit: radiating acicular needles and fibers
Colour: golden to yellow-orange
Description: "occurs as typical aggregates of golden fibers, associated with [messelite] and siderite, as well as sulfides....The strunzite is rare, and no more than half a dozen specimens have been secured...and none of them could be described as of outstanding quality. The identity of this material was confirmed by Clifford Frondel of Harvard University." (Schooner 1958) Associated with triphylite secondaries.
β“˜ Triphylite
Formula: LiFe2+PO4
Habit: anhedral cleavable masses
Colour: pale gray-green
Description: "The first triphylite actually seen in Connecticut was discovered by the author at the State Forest Mine in East Hampton, around 1955. It was first noticed in the dump; a search of the locality soon revealed two small bodies of triphylite in the left hand wall of the open pit, just above the short tunnel. A number of specimens were collected, some being cleavage masses up to four inches wide. Siderite, messelite, ludlamite, and several other typical minerals were intergrown, most of them owing their origin to the hydrothermal alteration of the triphylite. One small crystal was noted." (Schooner 1961)
β“˜ Triphylite var. Ferrisicklerite
Formula: Li1-x(Fe3+xFe2+1-x)PO4
Description: sparingly with the triphylite
References:
βœͺ Vivianite
Formula: Fe2+Fe2+2(PO4)2 · 8H2O
Habit: elongated, terminated prisms and cleavable masses
Colour: dark blue
Description: "transparent blue vivianite crystals, some spear-shaped, in vugs of messelite and siderite...While the vivianite crystals are small, they are of fine quality." (Schooner 1961) Also as coatings on triphylite and associated with messelite, siderite, mitridatite, strunzite and sulfides.
βœͺ Whitmoreite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Habit: radiating acicular crystals in micro spherical "naval mine" aggregates
Colour: golden brown
Description: Reported by Dick Schooner, no details in the references. Identified by Van King from posted photographs.
β“˜ Xanthoxenite ?
Formula: Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Habit: stains
Colour: yellow
Description: Compared by Schooner to similar material from the Palermo Mines, but unconfirmed here.
References:
β“˜ Zircon
Formula: Zr(SiO4)
Habit: tetragonal bipyramid
Colour: brownish gray
Fluorescence: yellow
Description: tiny crystals in albite
β“˜ Zircon var. Cyrtolite
Formula: Zr[(SiO4),(OH)4]

Gallery:

Be3Al2(Si6O18)β“˜ Beryl
Ca5(PO4)3(OH)β“˜ Hydroxylapatite
Ca2Fe2+(PO4)2 · 2H2Oβ“˜ Messelite

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
β“˜Sphalerite2.CB.05aZnS
β“˜Chalcopyrite2.CB.10aCuFeS2
β“˜Pyrrhotite2.CC.10Fe1-xS
β“˜Galena2.CD.10PbS
β“˜Pyrite2.EB.05aFeS2
β“˜Arsenopyrite2.EB.20FeAsS
Group 4 - Oxides and Hydroxides
β“˜Goethite4.00.Ξ±-Fe3+O(OH)
β“˜Arsenolite ?4.CB.50As2O3
β“˜Quartz4.DA.05SiO2
β“˜Pyrolusite ?4.DB.05Mn4+O2
β“˜Columbite-(Fe)4.DB.35Fe2+Nb2O6
Group 5 - Nitrates and Carbonates
β“˜Smithsonite ?5.AB.05ZnCO3
β“˜Siderite5.AB.05FeCO3
β“˜Malachite5.BA.10Cu2(CO3)(OH)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
β“˜Melanterite7.CB.35Fe2+(H2O)6SO4 Β· H2O
β“˜Pickeringite7.CB.85MgAl2(SO4)4 Β· 22H2O
Group 8 - Phosphates, Arsenates and Vanadates
β“˜Triphylite
var. Ferrisicklerite
8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
β“˜8.AB.10LiFe2+PO4
β“˜Heterosite8.AB.10(Fe3+,Mn3+)PO4
β“˜Herderite ?8.BA.10CaBe(PO4)F
β“˜Hydroxylherderite8.BA.10CaBe(PO4)(OH)
β“˜Rockbridgeite ?8.BC.10Fe2+Fe3+4(PO4)3(OH)5
β“˜Arrojadite-(KFe) ?8.BF.05(KNa)(Fe2+β—»)Ca(Na2β—»)Fe2+13Al(PO4)11(PO3OH)(OH)2
β“˜Palermoite ?8.BH.25(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
β“˜Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
β“˜Fluorapatite8.BN.05Ca5(PO4)3F
β“˜Phosphophyllite8.CA.40Zn2Fe(PO4)2 Β· 4H2O
β“˜Scorodite ?8.CD.10Fe3+AsO4 Β· 2H2O
β“˜Ludlamite8.CD.20Fe2+3(PO4)2 Β· 4H2O
β“˜Vivianite8.CE.40Fe2+Fe2+2(PO4)2 Β· 8H2O
β“˜Messelite8.CG.05Ca2Fe2+(PO4)2 Β· 2H2O
β“˜Moraesite ?8.DA.05Be2(PO4)(OH) Β· 4H2O
β“˜Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 Β· 6H2O
β“˜Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) Β· 6H2O
β“˜Whitmoreite8.DC.15Fe2+Fe3+2(PO4)2(OH)2 Β· 4H2O
β“˜Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 Β· 6H2O
β“˜Beraunite ?8.DC.27Fe3+6(PO4)4O(OH)4 Β· 6H2O
β“˜Laueite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 Β· 8H2O
β“˜Mitridatite8.DH.30Ca2Fe3+3(PO4)3O2 Β· 3H2O
β“˜Xanthoxenite ?8.DH.40Ca4Fe3+2(PO4)4(OH)2 Β· 3H2O
β“˜Autunite8.EB.05Ca(UO2)2(PO4)2 Β· 10-12H2O
Group 9 - Silicates
β“˜Almandine9.AD.25Fe2+3Al2(SiO4)3
β“˜Zircon9.AD.30Zr(SiO4)
β“˜var. Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
β“˜Bertrandite9.BD.05Be4(Si2O7)(OH)2
β“˜Beryl9.CJ.05Be3Al2(Si6O18)
β“˜Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
β“˜Microcline9.FA.30K(AlSi3O8)
β“˜Albite9.FA.35Na(AlSi3O8)
Unclassified
β“˜'Limonite'-

List of minerals for each chemical element

HHydrogen
Hβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Hβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Hβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Hβ“˜ BerauniteFe63+(PO4)4O(OH)4 · 6H2O
Hβ“˜ BertranditeBe4(Si2O7)(OH)2
Hβ“˜ DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Hβ“˜ GoethiteΞ±-Fe3+O(OH)
Hβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Hβ“˜ HydroxylapatiteCa5(PO4)3(OH)
Hβ“˜ LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Hβ“˜ LudlamiteFe32+(PO4)2 · 4H2O
Hβ“˜ MalachiteCu2(CO3)(OH)2
Hβ“˜ MelanteriteFe2+(H2O)6SO4 · H2O
Hβ“˜ MesseliteCa2Fe2+(PO4)2 · 2H2O
Hβ“˜ MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Hβ“˜ MoraesiteBe2(PO4)(OH) · 4H2O
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Hβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Hβ“˜ PhosphophylliteZn2Fe(PO4)2 · 4H2O
Hβ“˜ PickeringiteMgAl2(SO4)4 · 22H2O
Hβ“˜ RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Hβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Hβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Hβ“˜ ScoroditeFe3+AsO4 · 2H2O
Hβ“˜ StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Hβ“˜ VivianiteFe2+Fe22+(PO4)2 · 8H2O
Hβ“˜ WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Hβ“˜ XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Hβ“˜ Zircon var. CyrtoliteZr[(SiO4),(OH)4]
LiLithium
Liβ“˜ Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Liβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Liβ“˜ TriphyliteLiFe2+PO4
BeBeryllium
Beβ“˜ BertranditeBe4(Si2O7)(OH)2
Beβ“˜ BerylBe3Al2(Si6O18)
Beβ“˜ HerderiteCaBe(PO4)F
Beβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Beβ“˜ MoraesiteBe2(PO4)(OH) · 4H2O
Beβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
BBoron
Bβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
Cβ“˜ MalachiteCu2(CO3)(OH)2
Cβ“˜ SideriteFeCO3
Cβ“˜ SmithsoniteZnCO3
OOxygen
Oβ“˜ AlbiteNa(AlSi3O8)
Oβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Oβ“˜ ArsenoliteAs2O3
Oβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Oβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Oβ“˜ AlmandineFe32+Al2(SiO4)3
Oβ“˜ BerauniteFe63+(PO4)4O(OH)4 · 6H2O
Oβ“˜ BertranditeBe4(Si2O7)(OH)2
Oβ“˜ BerylBe3Al2(Si6O18)
Oβ“˜ DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Oβ“˜ Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Oβ“˜ Columbite-(Fe)Fe2+Nb2O6
Oβ“˜ FluorapatiteCa5(PO4)3F
Oβ“˜ GoethiteΞ±-Fe3+O(OH)
Oβ“˜ HerderiteCaBe(PO4)F
Oβ“˜ Heterosite(Fe3+,Mn3+)PO4
Oβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Oβ“˜ HydroxylapatiteCa5(PO4)3(OH)
Oβ“˜ LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Oβ“˜ LudlamiteFe32+(PO4)2 · 4H2O
Oβ“˜ MalachiteCu2(CO3)(OH)2
Oβ“˜ MelanteriteFe2+(H2O)6SO4 · H2O
Oβ“˜ MesseliteCa2Fe2+(PO4)2 · 2H2O
Oβ“˜ MicroclineK(AlSi3O8)
Oβ“˜ MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Oβ“˜ MoraesiteBe2(PO4)(OH) · 4H2O
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Oβ“˜ PhosphophylliteZn2Fe(PO4)2 · 4H2O
Oβ“˜ PickeringiteMgAl2(SO4)4 · 22H2O
Oβ“˜ PyrolusiteMn4+O2
Oβ“˜ QuartzSiO2
Oβ“˜ RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Oβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Oβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Oβ“˜ ScoroditeFe3+AsO4 · 2H2O
Oβ“˜ SideriteFeCO3
Oβ“˜ SmithsoniteZnCO3
Oβ“˜ StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Oβ“˜ TriphyliteLiFe2+PO4
Oβ“˜ VivianiteFe2+Fe22+(PO4)2 · 8H2O
Oβ“˜ WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Oβ“˜ XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Oβ“˜ ZirconZr(SiO4)
Oβ“˜ Zircon var. CyrtoliteZr[(SiO4),(OH)4]
FFluorine
Fβ“˜ FluorapatiteCa5(PO4)3F
Fβ“˜ HerderiteCaBe(PO4)F
NaSodium
Naβ“˜ AlbiteNa(AlSi3O8)
Naβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Naβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Naβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mgβ“˜ PickeringiteMgAl2(SO4)4 · 22H2O
AlAluminium
Alβ“˜ AlbiteNa(AlSi3O8)
Alβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Alβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Alβ“˜ AlmandineFe32+Al2(SiO4)3
Alβ“˜ BerylBe3Al2(Si6O18)
Alβ“˜ MicroclineK(AlSi3O8)
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Alβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Alβ“˜ PickeringiteMgAl2(SO4)4 · 22H2O
Alβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
SiSilicon
Siβ“˜ AlbiteNa(AlSi3O8)
Siβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Siβ“˜ AlmandineFe32+Al2(SiO4)3
Siβ“˜ BertranditeBe4(Si2O7)(OH)2
Siβ“˜ BerylBe3Al2(Si6O18)
Siβ“˜ MicroclineK(AlSi3O8)
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ QuartzSiO2
Siβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Siβ“˜ ZirconZr(SiO4)
Siβ“˜ Zircon var. CyrtoliteZr[(SiO4),(OH)4]
PPhosphorus
Pβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Pβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Pβ“˜ BerauniteFe63+(PO4)4O(OH)4 · 6H2O
Pβ“˜ DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Pβ“˜ Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Pβ“˜ FluorapatiteCa5(PO4)3F
Pβ“˜ HerderiteCaBe(PO4)F
Pβ“˜ Heterosite(Fe3+,Mn3+)PO4
Pβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Pβ“˜ HydroxylapatiteCa5(PO4)3(OH)
Pβ“˜ LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Pβ“˜ LudlamiteFe32+(PO4)2 · 4H2O
Pβ“˜ MesseliteCa2Fe2+(PO4)2 · 2H2O
Pβ“˜ MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Pβ“˜ MoraesiteBe2(PO4)(OH) · 4H2O
Pβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Pβ“˜ PhosphophylliteZn2Fe(PO4)2 · 4H2O
Pβ“˜ RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Pβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Pβ“˜ StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Pβ“˜ TriphyliteLiFe2+PO4
Pβ“˜ VivianiteFe2+Fe22+(PO4)2 · 8H2O
Pβ“˜ WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Pβ“˜ XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
SSulfur
Sβ“˜ ArsenopyriteFeAsS
Sβ“˜ ChalcopyriteCuFeS2
Sβ“˜ DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Sβ“˜ GalenaPbS
Sβ“˜ MelanteriteFe2+(H2O)6SO4 · H2O
Sβ“˜ PickeringiteMgAl2(SO4)4 · 22H2O
Sβ“˜ PyriteFeS2
Sβ“˜ PyrrhotiteFe1-xS
Sβ“˜ SphaleriteZnS
KPotassium
Kβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Kβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Kβ“˜ MicroclineK(AlSi3O8)
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Caβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Caβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Caβ“˜ FluorapatiteCa5(PO4)3F
Caβ“˜ HerderiteCaBe(PO4)F
Caβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Caβ“˜ HydroxylapatiteCa5(PO4)3(OH)
Caβ“˜ MesseliteCa2Fe2+(PO4)2 · 2H2O
Caβ“˜ MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Caβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Caβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Caβ“˜ XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
MnManganese
Mnβ“˜ Heterosite(Fe3+,Mn3+)PO4
Mnβ“˜ LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mnβ“˜ PyrolusiteMn4+O2
Mnβ“˜ RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mnβ“˜ StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
FeIron
Feβ“˜ AnniteKFe32+(AlSi3O10)(OH)2
Feβ“˜ ArsenopyriteFeAsS
Feβ“˜ Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Feβ“˜ AlmandineFe32+Al2(SiO4)3
Feβ“˜ BerauniteFe63+(PO4)4O(OH)4 · 6H2O
Feβ“˜ ChalcopyriteCuFeS2
Feβ“˜ DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Feβ“˜ Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Feβ“˜ Columbite-(Fe)Fe2+Nb2O6
Feβ“˜ GoethiteΞ±-Fe3+O(OH)
Feβ“˜ Heterosite(Fe3+,Mn3+)PO4
Feβ“˜ LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Feβ“˜ LudlamiteFe32+(PO4)2 · 4H2O
Feβ“˜ MelanteriteFe2+(H2O)6SO4 · H2O
Feβ“˜ MesseliteCa2Fe2+(PO4)2 · 2H2O
Feβ“˜ MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Feβ“˜ PhosphophylliteZn2Fe(PO4)2 · 4H2O
Feβ“˜ PyriteFeS2
Feβ“˜ PyrrhotiteFe1-xS
Feβ“˜ RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Feβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Feβ“˜ ScoroditeFe3+AsO4 · 2H2O
Feβ“˜ SideriteFeCO3
Feβ“˜ StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Feβ“˜ TriphyliteLiFe2+PO4
Feβ“˜ VivianiteFe2+Fe22+(PO4)2 · 8H2O
Feβ“˜ WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Feβ“˜ XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
CuCopper
Cuβ“˜ ChalcopyriteCuFeS2
Cuβ“˜ MalachiteCu2(CO3)(OH)2
ZnZinc
Znβ“˜ PhosphophylliteZn2Fe(PO4)2 · 4H2O
Znβ“˜ SmithsoniteZnCO3
Znβ“˜ SphaleriteZnS
AsArsenic
Asβ“˜ ArsenoliteAs2O3
Asβ“˜ ArsenopyriteFeAsS
Asβ“˜ ScoroditeFe3+AsO4 · 2H2O
SrStrontium
Srβ“˜ Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
ZrZirconium
Zrβ“˜ ZirconZr(SiO4)
Zrβ“˜ Zircon var. CyrtoliteZr[(SiO4),(OH)4]
NbNiobium
Nbβ“˜ Columbite-(Fe)Fe2+Nb2O6
PbLead
Pbβ“˜ GalenaPbS
UUranium
Uβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O

Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 6, 2024 00:32:31 Page updated: March 23, 2024 22:44:35
Go to top of page