Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zé Pinto claim, Aldeia, Cuparaque, Minas Gerais, Brazili
Regional Level Types
Zé Pinto claimClaim
AldeiaDistrict
CuparaqueMunicipality
Minas GeraisState
BrazilCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
19° 1' 59'' South , 41° 4' 16'' West
Latitude & Longitude (decimal):
Type:
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Mantenópolis8,547 (2012)19.7km
Pancas8,183 (2012)31.4km
Águia Branca2,554 (2012)35.2km
Barra de São Francisco20,743 (2012)36.3km
Resplendor15,131 (2012)37.8km
Mindat Locality ID:
7694
Long-form identifier:
mindat:1:2:7694:7
GUID (UUID V4):
1c6cdbaf-4afd-4e60-9030-938a71889bd7
Other/historical names associated with this locality:
Aldeia do Eme claim


Aimorés pegmatite district, Eastern Brazilian pegmatite province.

It is a pegmatite outcropping in a ravine on the Western slope of a hill overhanging the buildings of the Fazenda Santa Elisa, 43 kilometers ENE of Conselheiro Pena, seat of the municipe to which it belongs and from where access is easy. Coordinates: x = 282 y = 7894.2 Conselheiro Pena map. The surrounding area is made of round hills covered with grass, overhung by high sparse sugar loafs. The rare outcrops are phacoidal gneisses rich in garnet which belong to the Middle Precambrian of the Brazilian basement, dated 2,500 - 1,800 Ma. In 1989, after stripping of the soil and the thin, kaolinized rock, underground mining works began at 380 meters of altitude through a 15-meters long adit, with irregular widenings in chambers and sumps. After being abandoned for a short while, the works began again in quarry (1992), East of the old adit. The N 40°E pegmatite with a 30°NW dip is zoned, has a core with giant quartz and potassium feldspar crystals, surrounded by a coarse-grained strip, with schorl crystals, large biotite lamina and rounded nodules containing primary apatite. Are irregularly dispersed in potassium feldspar: smoky and rose quartz (massive), garnet (n = 1.828) in irregular nodules reaching 25 centimeters in diameter, flattened crystals of niobo-tantalite, light grey to bluish green chrysoberyl (d = 3.64) in multicentimetric crystals, greyish stony beryl, zircon in multi-millimetric bi-pyramidal beige prisms and massive pyrite nodules reaching 20 centimeters in diameter. Ixiolite in very fine needles and brown rosettes fills the cracks of a late apatite. Nontronite is associated to it, as well as secondary minerals of uranium, which are not specifically identified, and a few large pseudomorphe crystals of a carbonate by goethite. A few long and very blue flakes of kyanite were observed, embedded in feldspar, in the dumps of this zone. Variably flattened druses, of different sizes, the largest of which can measure two meters, are scattered in the coarse grain zone, around the core. Frequently linked to fractures having the same orientation as the pegmatite, but with a 50°NW dip, these druses, which are related to albitic substitution bodies posterior to the formation of the coarse-grained zone, are lined with slightly corroded quartz and potassium feldspar crystals, albite, muscovite and crystallized green apatite, which made the deposit famous. Four generations of apatite were identified and were the subject of a detailed study which showed it was possible for crystals of very different sizes and colors to coexist within a single pegmatitic body (Cassedanne et al., 1995).

Green apatite belonging to the second generation is always remarkably well crystallized and has made the deposit famous among mineral collectors (Cassedanne and Alves, 1990). The most common shape of the crystals is a hexagonal prism terminating in a pinacoid (0001), with vertical edges and/or bases sometimes bevelled by a second hexagonal prism and/or a hexagonal pyramid. The prisms, which are isolated or in groups of crystals without a determined orientation, irregularly interpenetrate, are a few centimeters long and have a diameter of 1 to 3 centimeters; larger specimens being rare. The crystals, which are more or less dark green, translucent to sub-opaque, are sometimes cavernous, resulting from the coalescence of small prisms with parallel axes, or they are zoned by strips of feldspar, along the c axis. Sometimes a light blue to blue green late cortex envelops certain crystals. Muscovite, albite and quartz are sprinkled over green apatite, often partially included in potassium feldspar or stuck onto mica plates surrounding the nodules that contain primary apatite. The luster of green apatite is greasy to vitreous, sometimes shiny. The measured density is of 3.21 ± 0.02. There are no cuttable crystals, all being internally fractured, with biphasic inclusions and metal plates. Over 100 kilograms of crystals were collected in the main druse, a good part of which was featured at the Tuscon Show in 1990.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


13 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
'Almandine-Spessartine Series'
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Beryl
Formula: Be3Al2(Si6O18)
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Chrysoberyl
Formula: BeAl2O4
'Feldspar Group'
Fluorapatite
Formula: Ca5(PO4)3F
'Garnet Group'
Formula: X3Z2(SiO4)3
Goethite
Formula: α-Fe3+O(OH)
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series'
Formula: (Ta,Nb,Sn,Fe,Mn)4O8
'K Feldspar'
Kyanite
Formula: Al2(SiO4)O
Microcline
Formula: K(AlSi3O8)
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Pyrite
Formula: FeS2
Quartz
Formula: SiO2
Quartz var. Rose Quartz
Formula: SiO2
Schorl
Formula: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
'Tantalite'
Formula: (Mn,Fe)(Ta,Nb)2O6
Zircon
Formula: Zr(SiO4)

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Pyrite2.EB.05aFeS2
Group 4 - Oxides and Hydroxides
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series'4..(Ta,Nb,Sn,Fe,Mn)4O8
Goethite4.00.α-Fe3+O(OH)
Chrysoberyl4.BA.05BeAl2O4
Quartz
var. Rose Quartz
4.DA.05SiO2
4.DA.05SiO2
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
Zircon9.AD.30Zr(SiO4)
Kyanite9.AF.15Al2(SiO4)O
Beryl9.CJ.05Be3Al2(Si6O18)
Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Microcline9.FA.30K(AlSi3O8)
Albite9.FA.35Na(AlSi3O8)
Unclassified
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
'Feldspar Group'-
'Almandine-Spessartine Series'-
'K Feldspar'-
'Garnet Group'-X3Z2(SiO4)3
'Apatite'-Ca5(PO4)3(Cl/F/OH)

List of minerals for each chemical element

HHydrogen
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
H Goethiteα-Fe3+O(OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
H ApatiteCa5(PO4)3(Cl/F/OH)
BeBeryllium
Be BerylBe3Al2(Si6O18)
Be ChrysoberylBeAl2O4
BBoron
B SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
OOxygen
O AlbiteNa(AlSi3O8)
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
O BerylBe3Al2(Si6O18)
O ChrysoberylBeAl2O4
O FluorapatiteCa5(PO4)3F
O Goethiteα-Fe3+O(OH)
O KyaniteAl2(SiO4)O
O MicroclineK(AlSi3O8)
O MuscoviteKAl2(AlSi3O10)(OH)2
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O QuartzSiO2
O Quartz var. Rose QuartzSiO2
O SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
O Tantalite(Mn,Fe)(Ta,Nb)2O6
O ZirconZr(SiO4)
O Garnet GroupX3Z2(SiO4)3
O ApatiteCa5(PO4)3(Cl/F/OH)
FFluorine
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
F FluorapatiteCa5(PO4)3F
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na AlbiteNa(AlSi3O8)
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
AlAluminium
Al AlbiteNa(AlSi3O8)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Al BerylBe3Al2(Si6O18)
Al ChrysoberylBeAl2O4
Al KyaniteAl2(SiO4)O
Al MicroclineK(AlSi3O8)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
SiSilicon
Si AlbiteNa(AlSi3O8)
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Si BerylBe3Al2(Si6O18)
Si KyaniteAl2(SiO4)O
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si QuartzSiO2
Si Quartz var. Rose QuartzSiO2
Si SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Si ZirconZr(SiO4)
Si Garnet GroupX3Z2(SiO4)3
PPhosphorus
P FluorapatiteCa5(PO4)3F
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S PyriteFeS2
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca FluorapatiteCa5(PO4)3F
Ca ApatiteCa5(PO4)3(Cl/F/OH)
TiTitanium
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
MnManganese
Mn Tantalite(Mn,Fe)(Ta,Nb)2O6
FeIron
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Fe Goethiteα-Fe3+O(OH)
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe PyriteFeS2
Fe SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Fe Tantalite(Mn,Fe)(Ta,Nb)2O6
ZrZirconium
Zr ZirconZr(SiO4)
NbNiobium
Nb Tantalite(Mn,Fe)(Ta,Nb)2O6
TaTantalum
Ta Tantalite(Mn,Fe)(Ta,Nb)2O6

Other Regions, Features and Areas containing this locality

South AmericaContinent
South America PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 4, 2024 08:22:49 Page updated: April 23, 2024 01:25:46
Go to top of page