Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Bailongshan pegmatite, Dahongliutan pegmatite field, Hetian Prefecture (Khotan Prefecture; Hotan Prefecture; Hoten Prefecture), Xinjiang, Chinai
Regional Level Types
Bailongshan pegmatiteDeposit
Dahongliutan pegmatite field- not defined -
Hetian Prefecture (Khotan Prefecture; Hotan Prefecture; Hoten Prefecture)Prefecture
XinjiangAutonomous Region
ChinaCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
36° 49' 59'' North , 79° 15' 0'' East
Latitude & Longitude (decimal):
Locality type:
KΓΆppen climate type:
Nearest Settlements:
PlacePopulationDistance
Zangguy13,027 (2013)65.9km


The Bailongshan lithium polymetallic pegmatite deposit is geologically situated in the eastern part of Tianshuihai terrane, contains a resource of 5.06 Mt (million tons) Li2O, 160 kt BeO, 316 kt Rb2O, 41 kt Nb2O5, and 11 kt Ta2O5, and belongs to a lithium-cesium-tantalum (LCT)-type deposit.
Spodumene is the main Li-bearing mineral and considerable amounts of Li are carried by phosphates (amblygonite-montebrasite and amblygonite-montebrasite series). The Bailongshan deposit is divided into six ore segments (I-VI) from northwest to southeast, among which regional zonation is well-developed in segment β…€ and VI. According to the different mineral assemblages and textures, seven pegmatite zones (i to vii) could be identified away from the muscovite granite, i.e., (i) quartz-albite-tourmaline, (ii) blocky albite-quartz-tourmaline, (iii) medium-coarse-grained quartz-tourmaline, (iv) layered aplite, (v) quartz-muscovite, (vi) quartz-albite-spodumene, and (vii) quartz-spodumene. Pegmatites from zone i-v are barren, whereas those from zone vi-vii are Li ore-bearing without inner zonation.
The LCT family and the ore-bearing pegmatite.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


11 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Albite
Formula: Na(AlSi3O8)
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Amblygonite
Formula: LiAl(PO4)F
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Amblygonite-Montebrasite Series'
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824.
β“˜ Beryl
Formula: Be3Al2(Si6O18)
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Cassiterite
Formula: SnO2
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Columbite-(Fe)-Columbite-(Mn) Series'
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Feldspar Group'
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Garnet Group'
Formula: X3Z2(SiO4)3
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'K Feldspar'
Formula: KAlSi3O8
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Microcline
Formula: K(AlSi3O8)
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824.
β“˜ Montebrasite
Formula: LiAl(PO4)(OH)
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Quartz
Formula: SiO2
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Spessartine
Formula: Mn2+3Al2(SiO4)3
Reference: Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ Spodumene
Formula: LiAlSi2O6
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.
β“˜ 'Tantalite'
Formula: (Mn,Fe)(Ta,Nb)2O6
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824.
β“˜ 'Tourmaline'
Formula: AD3G6 (T6O18)(BO3)3X3Z
Reference: Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824. Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 4 - Oxides and Hydroxides
β“˜Cassiterite4.DB.05SnO2
β“˜Quartz4.DA.05SiO2
Group 8 - Phosphates, Arsenates and Vanadates
β“˜Amblygonite8.BB.05LiAl(PO4)F
β“˜Montebrasite8.BB.05LiAl(PO4)(OH)
Group 9 - Silicates
β“˜Albite9.FA.35Na(AlSi3O8)
β“˜Almandine9.AD.25Fe2+3Al2(SiO4)3
β“˜Beryl9.CJ.05Be3Al2(Si6O18)
β“˜Microcline9.FA.30K(AlSi3O8)
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜Spessartine9.AD.25Mn2+3Al2(SiO4)3
β“˜Spodumene9.DA.30LiAlSi2O6
Unclassified Minerals, Rocks, etc.
β“˜'Amblygonite-Montebrasite Series'-
β“˜'Apatite'-Ca5(PO4)3(Cl/F/OH)
β“˜'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
β“˜'Columbite-(Fe)-Columbite-(Mn) Series'-
β“˜'Feldspar Group'-
β“˜'Garnet Group'-X3Z2(SiO4)3
β“˜'K Feldspar'-KAlSi3O8
β“˜'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
β“˜'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
β“˜'Tourmaline'-AD3G6 (T6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
Hβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Hβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Hβ“˜ MontebrasiteLiAl(PO4)(OH)
Hβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
LiLithium
Liβ“˜ SpodumeneLiAlSi2O6
Liβ“˜ AmblygoniteLiAl(PO4)F
Liβ“˜ MontebrasiteLiAl(PO4)(OH)
BeBeryllium
Beβ“˜ BerylBe3Al2(Si6O18)
BBoron
Bβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
OOxygen
Oβ“˜ AlbiteNa(AlSi3O8)
Oβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Oβ“˜ K FeldsparKAlSi3O8
Oβ“˜ MicroclineK(AlSi3O8)
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Oβ“˜ QuartzSiO2
Oβ“˜ SpodumeneLiAlSi2O6
Oβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Oβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
Oβ“˜ AlmandineFe32+Al2(SiO4)3
Oβ“˜ AmblygoniteLiAl(PO4)F
Oβ“˜ BerylBe3Al2(Si6O18)
Oβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Oβ“˜ CassiteriteSnO2
Oβ“˜ Garnet GroupX3Z2(SiO4)3
Oβ“˜ MontebrasiteLiAl(PO4)(OH)
Oβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Oβ“˜ SpessartineMn32+Al2(SiO4)3
FFluorine
Fβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Fβ“˜ AmblygoniteLiAl(PO4)F
Fβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
NaSodium
Naβ“˜ AlbiteNa(AlSi3O8)
Naβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
MgMagnesium
Mgβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
AlAluminium
Alβ“˜ AlbiteNa(AlSi3O8)
Alβ“˜ K FeldsparKAlSi3O8
Alβ“˜ MicroclineK(AlSi3O8)
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Alβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Alβ“˜ SpodumeneLiAlSi2O6
Alβ“˜ AlmandineFe32+Al2(SiO4)3
Alβ“˜ AmblygoniteLiAl(PO4)F
Alβ“˜ BerylBe3Al2(Si6O18)
Alβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Alβ“˜ MontebrasiteLiAl(PO4)(OH)
Alβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Alβ“˜ SpessartineMn32+Al2(SiO4)3
SiSilicon
Siβ“˜ AlbiteNa(AlSi3O8)
Siβ“˜ K FeldsparKAlSi3O8
Siβ“˜ MicroclineK(AlSi3O8)
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Siβ“˜ QuartzSiO2
Siβ“˜ SpodumeneLiAlSi2O6
Siβ“˜ AlmandineFe32+Al2(SiO4)3
Siβ“˜ BerylBe3Al2(Si6O18)
Siβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Siβ“˜ Garnet GroupX3Z2(SiO4)3
Siβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Siβ“˜ SpessartineMn32+Al2(SiO4)3
PPhosphorus
Pβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Pβ“˜ AmblygoniteLiAl(PO4)F
Pβ“˜ MontebrasiteLiAl(PO4)(OH)
ClChlorine
Clβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
Kβ“˜ K FeldsparKAlSi3O8
Kβ“˜ MicroclineK(AlSi3O8)
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Kβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Kβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
CaCalcium
Caβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Caβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
TiTitanium
Tiβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
MnManganese
Mnβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Mnβ“˜ SpessartineMn32+Al2(SiO4)3
FeIron
Feβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Feβ“˜ AlmandineFe32+Al2(SiO4)3
Feβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
NbNiobium
Nbβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
SnTin
Snβ“˜ CassiteriteSnO2
TaTantalum
Taβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A) In-text Citation No.
Zhang, Z., Jiang, Y., Niu, H., & Qu, P. (2021). Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit, Xinjiang, western China. Lithos, 380, 105824.
Zhang, X. Y., Wang, H., & Yan, Q. H. (2022). Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution. Ore Geology Reviews, 105178.

Other Regions, Features and Areas containing this locality

AsiaContinent
Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 6, 2024 01:50:41 Page updated: January 17, 2023 03:05:48
Go to top of page