Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zeng, Xiaohui, Gong, Tingting, Zhao, Han, Xiong, Fuhao (2023) Petrogenesis of Eocene Lamprophyre Dykes in Northern Qiangtang Terrane, Tibetan Plateau: Implications for the Tethyan Mantle Metasomatism and Tectonic Evolution. Minerals, 13 (10) doi:10.3390/min13101349

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitlePetrogenesis of Eocene Lamprophyre Dykes in Northern Qiangtang Terrane, Tibetan Plateau: Implications for the Tethyan Mantle Metasomatism and Tectonic Evolution
JournalMinerals
AuthorsZeng, XiaohuiAuthor
Gong, TingtingAuthor
Zhao, HanAuthor
Xiong, FuhaoAuthor
Year2023Volume<   13   >
Issue<   10   >
URL
DOIdoi:10.3390/min13101349Search in ResearchGate
Classification
Not set
LoC
Not set
Mindat Ref. ID16897748Long-form Identifiermindat:1:5:16897748:4
GUID62ccb28e-7ce4-4bb8-8909-3a75319d9be3
Full ReferenceZeng, Xiaohui, Gong, Tingting, Zhao, Han, Xiong, Fuhao (2023) Petrogenesis of Eocene Lamprophyre Dykes in Northern Qiangtang Terrane, Tibetan Plateau: Implications for the Tethyan Mantle Metasomatism and Tectonic Evolution. Minerals, 13 (10) doi:10.3390/min13101349
Plain TextZeng, Xiaohui, Gong, Tingting, Zhao, Han, Xiong, Fuhao (2023) Petrogenesis of Eocene Lamprophyre Dykes in Northern Qiangtang Terrane, Tibetan Plateau: Implications for the Tethyan Mantle Metasomatism and Tectonic Evolution. Minerals, 13 (10) doi:10.3390/min13101349
InLink this record to the correct parent record (if possible)
Abstract/NotesPost-collisional (ultra)potassic lamprophyre dykes are the key probes for understanding mantle metasomatism and reconstructing tectonic evolution. In this study, we present new petrological, geochronological, geochemical and zircon Lu-Hf isotopic data for lamprophyre dykes in the northern Qiangtang terrane (central Tibet), aiming to constrain their petrogenesis and geodynamic setting. The studied lamprophyres are minettes with phenocrysts of siderophyllite and phlogopite, which intrude into Triassic granite of 236.9 Ma. These lamprophyres yield zircon U-Pb ages of 39.7–40.9 Ma. They exhibit high contents of K2O (7.61–8.59 wt.%) and ultrapotassic features with high K2O/Na2O (11.43–14.38) ratios. They are characterized by increased values of Mg# (69.1 to 72.1) and high concentrations of compatible elements (e.g., Cr = 277–529 ppm, Ni = 232–322 ppm), which are diagnostic of mantle-derived primitive magma. The studied lamprophyres have a high abundance of rare earth elements (∑REE = 902–1061 ppm) with significantly fractionated REE patterns ((La/Yb)N = 66.3–100.6), and they are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), but depleted in high field strength elements (HFSE) (e.g., Nb, Ta and Ti) and heavy rare earth elements (HREE) with enriched zircon Hf isotopes (εHf(t) from −6.40 to 3.80). This indicates their derivation from an enriched mantle source which was metasomatized by subduction-related fluids and sediment-derived melts. A petrogenetic study suggests that the lamprophyres were generated by the partial melting of a phlogopite-bearing lherzolite within the garnet stability field. We propose that the Cenozoic ultrapotassic mafic rocks in the central Tibetan Plateau originated in the lithospheric mantle metasomatized by the subduction-related components, and are the magmatic response to the detachment of the subducted Tethyan slab.

Map of Localities

Locality Pages

LocalityCitation Details
Rumei lamprophyres, Markam Co. (Mangkang Co.), Qamdo Prefecture (Changdu Prefecture), Tibet, China

Mineral Occurrences

LocalityMineral(s)
Rumei lamprophyres, Markam Co. (Mangkang Co.), Qamdo Prefecture (Changdu Prefecture), Tibet, China Apatite, Augite, Chlorite Group, Epidote, Granite, Illite, Lamprophyre, Minette, Muscovite, Orthoclase, Phlogopite, Plagioclase, Pyroxene Group, Siderophyllite, Zircon


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 4, 2024 16:16:11
Go to top of page